从小就学习了不少数学知识的人都一致认为:三角形的三个内角和一定等于度;两条平行不相交的线不可能会相交。这些知识都是认定的死知识,应该毫无争论才对。但是,在年,俄罗斯数学家发表了一篇演讲,演讲内容就否定了大家认知的这些知识。他在演讲中提到了自己的理论:平行的两条线可以相交;三角形的内角和并不等于度。
这样的理论明显就否定了我们的认知,和大家的看法出现了偏差。所以在当时,他的理论一说出就引发了大家的讨论。在场的有不少数学家们,他们觉得眼前这位年轻的男子太过于疯狂,说的话语也是莫名其妙。这些大佬级数学家们向这位年轻人投去了异样眼光,觉得这位叫罗巴切夫斯基的年轻人根本不可理喻。因此在震惊过后,他们对其采用了冷淡的态度。
当时学术委员会拜托三位数学界相当有名的数学家们对其论文进行鉴定。这三位数学家便是西蒙诺夫、博拉斯曼、古普费尔。结果三个人都一致否定了他的论文,但却迟迟没有给出对方书面评价。或许是觉得这么浅显的道理根本没有必要专门做出书面评价,又或许是他们觉得对方给出的这些理论是在愚弄他们。总之,他们一直没有给出意见,以至于时间一长,其文稿内容不小心被遗失了。
罗巴切夫斯基提出的这样理论是不是真的因为他疯了呢?很显然不是,只是当时他的理论太过于超前,让很多人无法理解,以至于大家觉得他疯了。其实这样的事情数不胜数,有很多科学家们提出了一个新的理论,打开了一个新世界的大门,但其他人没有找到这个大门,以至于他们就觉得对方说谎。当年有人提出了地球是圆的理论,大家觉得这个人是疯子,地球若是圆的,人怎么可能站在上面呢?结果到了现在,地球是圆的这一个说法已经成为了常识,得到了大家的公认。
罗巴切夫斯基在论文里面提到的平行线可以相交的理论是基于欧几里得几何。这个知识里面有5条公设,前面4条都很好证明,第5条却非常复杂。不少数学家们通过不断努力,都一直没能证明第5条。结果罗巴切夫斯基采用了归谬法证明出了第5条公设存在矛盾。他将第5条公设稍微改了一下,就发现和前面4条公设完全融合,形成了一个完整的几何体系。所以他证明的这个体系后来就被称之为是非欧几何学。
一个新的理论出现常常会让人觉得匪夷所思,于是大家否认着非欧几何学,甚至嘲笑罗巴切夫斯基连最基本的理论知识也会弄混。由于他的新理论违背了大家认知的定理,故而大家觉得他站在了大众的对立面,对他相当排外。在种种压力之下,他差一点丢掉了工作,生活也越发的窘迫。其实,就在他发表这个理论的同一年,德国数学家黎曼也发现了这个理论,他也同样没有得到大家的认可,被大家一致排外。
在这两位科学家之后,爱因斯坦发明了相对论,但他始终没有找到能够支持他这个观点的理论依据,这也让他头疼了很久。直到有次他无意间在一堆废纸中看到了黎曼的理论,也就是非欧几何学。他发现这套理论正好能够切合相对论,能让他的观点有承载的依据。随着爱因斯坦相对论被大家认同,非欧几何学也随之得到了认可。人们此时才发现,当年罗巴切夫斯基能发现这一个理论是多么的了不起,这个理论就是揭秘世界真实样貌的钥匙。
年,人们在喀山大学为他立起了雕像,以此来纪念他。他的这个雕像是全世界第1个被树立起的数学家雕像,由此看来,他的成就是多么的辉煌,他的这个壮举是多么的让人震惊。只不过,罗巴切夫斯基的雕像被树立起来时,他已经去世了40多年。在他活着时,他一直受到大家的冷落,被嫌弃和嘲讽的眼光包围。没想到死后几十年的时间,人们对他的态度就发生了翻天覆地的变化,开始用仰望敬佩的眼光注视着他的雕像。
人们常常说,虽然正义会迟到,但它从来不会缺席。一个正确的理论,可能最初得不到大家的认可,随着时间流逝,科技的进步,这个理论终会被时代验证,得到认可。不管在什么时候,如果觉得是正确的事,那么就应该坚持去做,不需要在意外界的冷嘲热讽,坚持本心,对得起自己就行了。罗巴切夫斯基就是这样,他没有因为外界的刁难而放弃自我,反而是坚持在正确的道路上,虽然这样的坚持让他的生活变得艰难,但他始终没有放弃。而这样的坚持是有结果的,他如今成为了名留世界史的人物,是如同牛顿、爱因斯坦一般的伟人。
其实像罗巴切夫斯基这样的数学家,在俄罗斯有不少。在其他国家的数学家眼中,很多俄罗斯数学家们都显得特异独行,这些数学家们不会因为外界的眼光或是物质条件而放弃自己的原则。或许就是因为他们这样纯粹的本心,才能够在学术上面走得更远。俄罗斯数学家们不仅对研究持有热情态度,他们对培养下一代也是不遗余力。平常他们会利用假期给中小学的孩子们上课,提升一下他们对数学的兴趣,帮他们发展自己的天分。
他们这么做的原因还是出于对数学的爱,毕竟要不断为数学界注入新鲜的血液,要有更多的活力加入数学界,这样才能推动数学领域的发展,攻克一些数学难题,解开困扰不少数学家们的问题。咱们也应该学一学俄罗斯数学家们对数学的纯粹态度,积极培养下一代的发展,毕竟数学领域是其他领域的基础,学好了数学,才能更好的学习其他的知识。
俄罗斯的教育就是精英教育,从小学就开始发掘最牛的学生,然后送到最好的学校进行培养。这其中,最值得我们学习的就是,他们的一线科学家往往也投身到中学教育上去。
比如俄罗斯有位数学家叫阿诺德,在年的时候,一些在巴黎居住的俄罗斯人要求他帮助他们的年轻孩子以传统俄罗斯的思维发展训练。
于是,他就给这些孩子出了一些题,叫《给5至15岁孩子出的数学题》
这里面,有什么题呢?
里面有要求证明Riemannzeta函数的欧拉公式,有庞加莱回归定理……
这听起来,完全不是给孩子做的啊。
但是阿诺德表示,这些题是孩子完全可能做出来的,而且还不是那种需要天才去做的。他说:“我的长期经验表明,在校学习迟钝的C级学生可以比优秀学生更好地解决这些问题,因为他们在课堂后面的智力“堪察加”的生存“要求比管理帝国所需要的更多的能力”,正如费加罗在博马舍的戏中所说的那样。另一方面,A级学生在这些问题上无法弄清楚“什么东西要乘以什么”。我甚至注意到,五岁的孩子比那些被学校训练摧残的学龄儿童更能解决这样的问题,而相应地,这些学龄前儿童又比那些忙于死记硬背的大学生们更容易找到解答。(诺贝尔奖或菲尔兹奖得主在解决这些问题上是最糟糕的。)”
那阿诺德是什么来头呢?他20世纪最伟大的数学家之一,动力系统和古典力学等方面的大师。
他已经达到这样的级别,还专门为中学生设置题目。其实这种情况在俄罗斯是非常常见的。俄罗斯的顶级科学家往往就是教育家,他们会在暑假的时候,在各种数学以及理工夏令营里给中学生上课。
相比之下,中国现在有些北大清华的毕业生到中学教书,大家都认为是浪费人才,看看俄罗斯是怎么“浪费”人才的。
俄罗斯这些世界顶尖科学家给中学上完课之后,就会把他们的讲义写成文章,发表到杂志上,供俄罗斯的所有孩子阅读。
正是这种薪火传递,才造就了俄罗斯变态的理工教育。大家有机会,可以给孩子看俄罗斯的理工书。
像俄罗斯有一套《俄罗斯大师科学丛书》,一共十本。是俄罗斯最有名的科普大牛雅科夫伊西达洛维奇别莱利曼写的。
他牛到什么程度?为了表彰他的成绩,人类拍到的第一个月球环形山,名字就命名为“别莱利曼”环形山。
这套书一共有十本
里面全是阿诺德式的题目,或者叫传统俄罗斯的思维发展训练题。
中国老一辈的科研人员数理基础扎实,就是因为接受的苏式教育,用的苏联的教材。
现在中国大学里,还有不少使用苏联人编写的理工书籍。
比如吉米多维奇的《数学分析习题集》、普罗斯库列科夫的《线性代数习题集》、法杰耶夫的《高等代数习题集》、符拉基米罗夫的《数学物理方程习题集》……这些题目要是都涮过,那绝对是也大牛了。
中国的学生要是想往奥数上面发展,做俄罗斯的奥数题绝对有效。
比如说,怎么不靠近树来测量树的高度。
这道题目就是俄罗斯航天之父齐奥尔科夫斯基根据自己14岁时一次坐在屋子里自制尺子测量远处灯塔距离改写的。而这本书齐奥尔科夫斯基也参与了编写。
这个书比较合适小学高年级以及初中的孩子。
现在高考的竞争早已提前到初中、小学、幼儿园了。高考中,数理化基本上可以决定一个孩子的命运,还有将来的择业,就业,这是一个连锁效应。
看了他们俄罗斯的书,你才得懂俄罗斯为什么这么牛。
俄罗斯数学大师佩莱尔曼
今天特地把这套书介绍给头条的读者,这套书一共十本,原价是。社里给到我们的团购价是。
这套书包括了数理化的各个层面,适合小学到初中的孩子,孩子看完后,对数理化就会有一个更全面更深入的理解。
转载请注明:http://www.baoshijiec.com/ylnr/15063.html