在机器学习领域,有种说法叫做“世上没有免费的午餐”,简而言之,它是指没有任何一种算法能在每个问题上都能有最好的效果,这个理论在监督学习方面体现得尤为重要。
举个例子来说,你不能说神经网络永远比决策树好,反之亦然。模型运行被许多因素左右,例如数据集的大小和结构。
因此,你应该根据你的问题尝试许多不同的算法,同时使用数据测试集来评估性能并选出最优项。
当然,你尝试的算法必须和你的问题相切合,其中的门道便是机器学习的主要任务。打个比方,如果你想打扫房子,你可能会用到吸尘器、扫帚或者拖把,但你肯定不会拿把铲子开始挖坑吧。
对于渴望了解机器学习基础知识的机器学习新人来说,这儿有份数据科学家使用的十大机器学习算法,为你介绍这十大算法的特性,便于大家更好地理解和应用,快来看看吧。
01线性回归
线性回归可能是统计学和机器学习中最知名和最易理解的算法之一。
由于预测建模主要
转载请注明:http://www.baoshijiec.com/ylzz/12584.html